Algorithmic Statistics, MIT, Fall 2025

Course Information

Logistics

Instructor

TA

Course project

Class Schedule

(class schedule subject to change)

Lecture number Date Lecture topic Notes Video Due dates
1 9/3/25 intro, le cam, uniformity testing lower bound draft panopto
2 9/8/25 overview, linear and logistic regression, start sparse regression draft panopto
3 9/10/25 sparse regression, compressed sensing Moitra book, Ch. 5 panopto PSET 1 out
4 9/15/25 learning a gaussian and a product distribution – tv versus parameter learning draft panopto
5 9/17/25 introduction to MRFs, ising uniformity testing draft panopto
6 9/22/25 tree-structured graphical models I – belief propagation draft panopto
7 9/24/25 tree-structured graphical models II – chow-liu, fano (see lec 6) panopto PSET 1 due / PSET 2 out
8 9/29/25 parameter learning MRFs draft panopto
9 10/1/25 tv learning MRFs, tournament draft panopto
10 10/6/25 kesten-stigum bound, temperature draft panopto
11 10/8/25 svd, pca, best rank-one approximation PSET 2 due / PSET 3 out
12 10/15/25 verifying distribution properties
13 10/20/25 spectral clustering I: gaussian mixtures
14 10/22/25 spectral clustering II: stochastic block model PSET 3 due / PSET 4 out
15 10/27/25 stochastic block model robustness and ultra-sparse regime – grothendieck inequality and sdp
16 10/29/25 matrix completion
17 11/3/25 tensor decomposition I: Jenrich’s algorithm
18 11/5/25 tensor decomposition II: ICA, HMMs, and friends PSET 4 due
19 11/12/25 robust mean estimation via filter
20 11/17/25 robust learning ising models
21 11/19/25 SQ I Project proposal due
22 11/24/25 SQ II – friends of SQ including low degree, overlap gap, SoS
23 11/26/25 planted clique – robust sparse mean estimation
24 12/1/25 lwe reduction??
25 12/3/25 (sam traveling – possibly cancel class or rehearse presentations)
26 12/8/25 project presentations
27 12/10/25 project presentations Final project due

Course Policies

Grading

Collaboration policy

AI assistants policy

Late policy